VIDEO BROWSING
USING COOPERATIVE
VISUAL AND
LINGUISTIC INDICES

Proposal No.: ARPA SB 961-037
Contract No.: DAAHO01-96-C-R121

Phase 1: Final Project Report

Dr. Arun Hampapur
Dr. Amarnath Gupta
Dr. Ramesh Jain

19961227 009

DTIC QUALINY fhirisUiai &

Virage Incorporated
177 Bovet Road, Suite 520
San Mateo, CA 94402-3121

Video Browsing Using Cooperative Visual and

Linguistic Indices
Proposal # ARPA SB 961-037
Contract # DAAHO1-96-C-R121

Phase I: Final Project Report

Dr. Arun Hampapur (Principal Investigator) Dr. Amarnath Gupta
Dr. Ramesh Jain (Co Principal Investigator)

Virage, Inc.

177 Bovet Road
San Mateo, CA 94402

1 Introduction

Management of video information for content-based retrieval has been recognized as a significant
problem in the multimedia community for a long time. Recent literature reports research activi-
ties in three major areas: segmentation of special video events based on both abrupt and gradual
scene changes; motion analysis techniques applied toward determination of camera movement and
object/background segmentation; and data-modeling and query-language development with the as-
sumption that objects in the video have been segmented by low-level processing. While these ap-
proaches are all valid research problems, we as an industrial research group, have taken a more
application-driven approach, and address the questions: “What is the purpose of retrieval by video
content? How can we use both imagery-based and non-imagery-based information together to ac-
cess large amounts of video by content?” The proposal was chartered to explore methods and de-
velop techniques for information retrieval and browsing of news video using both imagery and lin-
guistic content. We chose television news as the domain of this video retrieval project. The long-
term goal for video news information retrieval/browsing system is to have the ability to:

1. isolate a specific information item using imagery, linguistic, and audio description and any
combination of these

2. present it at different levels of abstraction (detail) using any a priori knowledge about the
domain of application to the maximum extent possible

3. given one piece of information related to a semantic information unit such as a news story,
find other parts of the same or related semantic units

4. allow a user to put in further annotations as additional information related to a semantic in-
formation unit like a news item,

5. allow the user to search through the collection of news videos using any prior annotation that
the user has made.

Fulfilling the contract required us to develop a prototype Video Data Management System, which
demonstrated the infrastructural framework for exploring the research issues listed in the proposal.
The system has both hardware and software components which together allow the complete man-
agement of video data. The fulfillment of the proposal also led to the development of the Virage
Video Engine, a complete multi-media engine for indexing and retrieving video based on its con-
tent. The Virage Video Engine can process all the three components of video, namely, the image
sequence channel, the audio channel and the closed caption channel.

1.1 Organization of the Report

In this report we present the process of designing and developing the video data management sys-
tem. We also present the technical details of the algorithms used and the infrastructure developed.
Section 2 presents the technical objectives of the project and also an overview of the component
technologies used in the project. The prototype system included a significant hardware component,
the architecture and design of this subsystem is presented in 3. The core content-based indexing and
retrieval algorithms are encapsulated in a software engine called the Virage Video Engine (VVE)
which is discussed in section 4. Evaluating the system to identify its strengths and weaknesses is
an important step in the development of real systems. The evaluation criteria for a video data man-
agement system and the evaluation of our prototype using these criteria are presented in section 6.
The conclusion of the report is presented in section 7.

2 Objectives and Overview

This section presents the technical objectives of the proposal and an overview of the existing tech-
nology,

2.1 Technical Objectives

The technical objectives for the Phase I research were specified as follows:

1. create a set of fully automated video indexes based on in-house and state-of-the-art techniques

of shot segmentation, motion segmentation, audio segmentation, key frame extraction and
analysis.

2. extract a set of key expressions from the transcribed text of the news, displayed captions
and interactively or manually entered annotations where necessary to index the input video
stream. An interesting subgoal is to investigate the extent to which video segmentation tech-

niques can be improved by using the parallel set of key expressions extracted from news tran-
scripts '

3. develop a visual dictionary (called thesaurus in the proposal) structure to associate related
key expressions, related image features and key expressions with image features

‘ 4. develop a method to use the visual thesaurus to jointly index images and word expressions
develop an abstraction scheme to relate various degrees of abstractions of the news video
(such as the headlines, the facts and the details)

5. develop a small set of query processing and browsing schemes to retrieve information at a
user-specified level of abstraction using linguistic expressions, image similarity, sequence
similarity and combinations of these

6. integrate the techniques developed into the Virage software

The deliverable items for the project are:

1. reports and scientific papers describing design decisions, data structures, feature computation
algorithms and their performances, and experimental results for different retrieval strategies.

2. a prototype application containing a video insertion module, a feature computation module,
an annotation module and a query module. This prototype would allow users to:

(a) insert a new news video clip for feature extraction and indexing
(b) perform interactive annotation through a graphical interface

(c) perform a fixed set of queries, and browse through the video collection using a simple
graphical interface

. (d) choose between image-only, audio-only, language-only and combination indexes for
video retrieval and browsing.

During the project period we have created the hardware and software infrastructure to build the
news database application, and have a developed prototype system and experimental implementa-
tion of algorithms for video analysis, indexing and query in the domain of CNN news.

2.2 An Overview of the Component Technologies

Although the focus of the project is on research in the areas outlined in the previous subsection,
engineering a prototype required us to survey the different pieces of technology required. In this
section we present a brief overview of this process which involved identifying the exact details of
the pieces, determination of the alternatives available and making a decision on what to incorporate
in the feasibility prototype.

The process flow for the intended application consists of the following steps:

1. Analog video from the video source (a VHS tape) is digitized into a suitable compressed for-
mat. Ideally, the compressed video can be both decompressed and frame accessed for analy-
sis. Also ideally, the compression and decompression of the video occurs at near-real time.

2. Analog audio is separated from the video and digitized to a suitable format. Ideally, the audio
. is synchronized to the video by by SMTPE time-code or equivalent.

3. Closed caption text is separated from the video and stored as ASCII text. Ideally, the closed
caption text is frame synchronized.

. 4. Time segments of digitized video, audio and text are inserted together as multimedia objects
to the Virage System for analysis.

5. Each multimedia block is analyzed by the Virage system to extract

e shot boundaries and keyframes from image sequence
e motion properties from image sequence
e speech, music, silence and other relevant boundaries from audio

e speaker and other context transitions (like anchorperson to on-location reporter) from
video or audio or closed caption text. Ideally, more than one media is used to locate
such transitions.

o textual content from closed caption text
e textual information from the user to be treated similarly as the textual descriptor ac-

quired from closed caption medium

Once extracted, the Virage System stores the information as a compact persistent object (fea-
ture vector) for future use.

6. The user, through a graphical user interface formulates queries on information extracted from
one or more media

. 7. The Virage System uses the stored feature vectors to find multimedia objects which satisfy
the query. The query classes allowed are:

e Query by Multimedia Value: the system returns all multimedia objects that satisfy a
user-specified value condition

¢ Query by Multimedia Example: the system ranks all multimedia objects in terms of their
similarity to a user-specified multimedia object

e Navigation: the system plays back the video from a location in the multimedia stream,
based on a location finding condition specified by the user

e Visual Dictionary Query: the system performs a set of multimedia queries, based on a
textual query performed by the user

8. The Virage System presents query results through a graphical user interface. Ideally, different
query responses will be presented through a different results interface.

Most of our engineering decisions were in the first three of these steps:

Digitized Video Format: We considered AVI, QuickTime, and MPEG-I as potential compressed
formats we use as the default representation of digitized video. AVI was not used because
it is a stream-only format that does not provide frame access. Although QuickTime allows
frame access, it is proprietary format of Apple, Inc. and is available on fewer platforms than

MPEG, which is the ISO standard. It was decided that although at a future date the applica-
tion should support several formats, for the feasibility study period it is more meaningful to
work with a format which can be programmatically manipulated to fit the application. For
example, MPEG allows a user to include customized information in the compressed stream
for later reuse. One of the tasks for which we needed to use this ability was to store the analog
frame numbers of each video segment which was encoded as a stored multimedia object in
the Virage System. The encoding enabled to relate the multimedia object to its source ana-
log segment while playing back the original video as the response of a query. We used the
Berkeley MPEG encoder and decoder for the purpose of this study.

Digitized Audio Format: Although the intended application needed audio capability, it was de-

cided inappropriate to build in-house expertise with commercial technology available for in-
tegration. Our brief survey revealed that very few companies have a feature extraction engine
that is easily integrable with third party software. The products that do have such capabili-
ties are mostly speech recognition oriented and do not accept audio from video feeds that con-
tain a significant proportion of non-speech audio content. To be integrated with our proposed
work, these products definitely need a preprocessing step to filter out speech. Our preliminary
survey also revealed that most of the speech algorithms are not designed to work for speech
mixed with background noise, something that is bound to happen for any live video recording.
This led us to work with MuscleFish, Inc. an audio database company with content-based re-
trieval capabilities. It was mutually agreed with MuscleFish, Inc. to use the AIFF format as
the representation of digitized audio.

Closed Caption Decoding: It was determined that frame synchronization of closed caption text

was an important first step to integrate linguistic information with video. Our survey revealed
that none of the vendors who provide closed caption support on audiovisual equipment pro-
vide any means to route the text to a computer. Moreover, some stand-alone hardware de-
vices that do allow external decoding of the closed caption information from the video signal
provide no frame synchronization. It was also found that most of the video server systems
commercially available do not provide frame-synchronized closed caption to the video re-

quester.We therefore decided to have a specialized hardware device built specifically for the
project.

3 Video Hardware Architecture

The design of the video hardware system was motivated by the following factors.

Random Access Video: Keeping in mind that the ultimate goal of the project is to be able to search

and browse video based on imagery and language analysis, the storage of the video data has
to be on a media which supports true random access of video.

Creation of Digital Video Proxies: The hardware system should also support the creation of dig-

ital video which will be used for the analysis and indexing of the video stream.

Large Video Volumes: The demonstration required at the end of Phase 2 of the projects requires

a system capable of providing content based querying and browsing for at least 12 hours of

5

news video.

Complete Video Input Output Facility: The final demonstration system (at the end of Phase II)
should be capable of taking in video from a video tape and putting the results of the search
onto a video tape.

Commercial of the Shelf Technology: The final demonstration system should maximize the use
of COTS technology.

Keeping these constraints in mind, we have acquired the following hardware for the project:

1. SONY Hi-8 Recorder/Player (SOH-EVO550H) with 10 Hi-8 MPX Pro MP cassettes (2 units).
2. SONY CRYV (laserdisc) Recorder/Player (SOH-LVR3000AN) with 10 laser discs (1 unit)

3. SGI Indy-5000 computer (1 unit) with MJPEG video compression board and audio capture
board.

4. SONY Trinitron (27 inch) Television Monitor

5. Closed Caption Decoder (1 unit)

3.1 Design Rationale

The rational for each of the individual hardware subsystems are

Hi-8 Tape Systems: The tape systems were acquired to support the complete video input output
facility. Since almost all video data originates on tape, The results of searches will also be
output onto a tape. The dual deck system is driven by nonlinear editing software which allows
the search results to be edited into a suitable format based on the application.

LaserDisc System: This system was chosen for two reasons, it provides random access to video,
and can store video at full resolution. This will allows the user to access and view the results
of video search with zero cueing delay and at full NTSC video resolution. The laser disc
also provides the frame accurate access which allows full resolution digitization of the video
using generic digitization hardware. The frame accurate access also allows for experiments
with digital video tracking while keeping the video on the video disc.

SGI Computer System: The standard software development and testing platforms at Virage Inc.

are SGI’s. The SGI systems also provide good support tools for manipulation of digital video
formats.

TV Monitor: The Sony TV monitor provides the viewing system for the video data. It also pro-
vides a built in closed caption decoding system against which the results of the external closed
caption decoder can be verified.

Closed Caption Decoder: The decoder provides the ability to extract the closed caption informa-
tion from the television signal and stream it out on to a RS232 serial link as a ASCII character
stream. The closed caption decoder also provides relative time information (in terms of frame
numbers) along with the closed caption data. The time information allows the synchroniza-
tion of the text and image streams.

3.2 Hardware Architecture Description

The following is a short functional description of the hardware system that is currently being de-
signed and implemented at Virage Inc. as part of the DARPA Phase I grant (see Figure 1). All the
initial video data is on video tapes in the Hi-8 or VHS format. The Hi-8 video decks are controlled
by software on the SGI system. Video Deck drivers provides all the basic video player control func-
tionality. The video output of the tape system forms the video input to the Laser Disc System. The
Laser Disc is also controlled by an RS232 interface which allows the synchronized control of the
tape system and the laser disc system. The video data from the tapes is recorded onto the laser discs
which are the secondary storage media for the video data.

The audio-video outputs of the laser disc player form the inputs to the video and audio digiti-
zation hardware on the SGI. The video signal output is also used as the input to the closed caption
decoder. The Laser Disc player is the main data source to the digitization process. The RS232 con-
trol software for the laser disc player provides the all the video player controls along with the disc
recording control commands.

The video outputs form the laser disc player are used as inputs to the video tape system. The
results of a video search are used to control the laser disc player for analog playback. The tape
system will be used to record the search results.

[: Say: VIGEo M8 | o g fTICTRS29C Interface Jea————
Video Cassette Recorder

Soty: video HiB L g [MTCTRSIC Interface

Video Cassette Recorder
CC Text & Frame Numbers l
Closed Caption Decoder SCSI to RS232 Carwverter
+Vid°° Out SGI Indy R5000 %
Sony': CRVdisc 9 GB Disk
JAudio/Video In] Laser VideoDisc Recorder Disc Control | MIPEG Video Digitizer | Audio Capture Card Digital Video

Audio Out Video Qut T Video In Audio In

Figure 1: Architecture of Video Hardware Setup

4 The Virage Video Engine

The idea of a video engine is conceptually similar to that of a database engine. The video engine is a
tight encapsulation of the core functionality required for automatically processing video streams to
generate indices into the data and retrieving data based on these indices. The engine is designed to
be independent of the actual backend data store and the application components which provide user
interactions. The VVE can be used to build an application which utilizes any database system and
application specific graphical user interface. We first present a discussion of the design rationale
we used as a guideline. This is followed by a description of the engine architecture followed by a
description of the currently implemented video primitives. The video engine has evolved from the
Virage Image Engine (VIE) [1] and uses many of the concepts and ideas used in the image engine.

4.1 Design Rationale

The design of the software system is being driven by the following requirements derived from the
problem description.

Multi-media Analysis: The problem requires that the imagery, audio and closed captioned text
components of the video stream are analyzed in synchrony to compute features. Since the
synchronization is not an engine-related task, the audio and the text components would have
to be pre-synchronized to image frame by the application software before they are processed
by the engine. The engine itself must consider these components to be independently pro-
cessable by three different component engines. For the imagery and audio component en-
gines analysis implies finding index points which divide the input into “segments”, finding a
representative feature-set for each segment, pack the segment-features into an efficient data
structure and return it to the application. For a news video this means identifying and charac-
terizing keyframes and audio transitions. The task of the text component engine is to create a
text feature” that indexes each significant expression to a set of frames where they are likely
to have appeared.

Integration of Machine and Manual Annotation: An important task of the application software
invoking the engine is to allow an annotator to put more information into the machine-processed
videos. This additional information must then be subjected to alphanumeric processing. An
example would be to add the name of the newscast with a news segment. A more complex

‘example would be to add a semantic reference to the news segment, potentially relating it
to other news pieces. To facilitate the task of integration our design will allow an “update-
by-query” strategy available in database management systems. Thus, the user would be able
to first issue a query to find similar visual or auditory segments from the database and then
add the annotation to correlate them. We think that this design will facilitate the process of
grouping video segments into stories, and categorizing stories into story groups.

Multi-media Queries: The multi-media query can potentially use imagery, audio, text, and anno-
tation to set the search conditions. While the individual component engines have the ability
to compare feature vectors, the media engine needs to have the ability to parse a multime-
dia query and dispatch it to the component engines. Similarly, it must assimilate the results
returned by individual engines into a consistent response for the user. Ideally, it should also

perform some degree of optimization and have the ability to maximize search efficiency, but
we shall not address this requirement in this phase of the project.

4.2 Architecture

The video engine is built using a number of components. The framework of the engine allows for

these components to be changed by the application developer depending on the application. The
two main concepts used in the video engine are

The Media Object: To consider every media (video, audio, text) as an information bearing entity,
we devised the media object as an abstraction of a generic “media” data type with uniform
behavior, and derived individual media types as its subclasses. The media object provides the
necessary isolation between the engine and the specific details of the various formats in which
data is typically stored. For example, video can be stored in numerous formats like MPEG,
AVI, QuickTime, etc., the media object hides these details from the engine and provides a
uniform interface irrespective of the underlying data format.

The Primitive: The primitive is an abstraction of a property computable from any media. For ex-
ample, for audio the primitive computes properties like means and variances of loudness,
pitch, spectral bandwidth, and duration of a sound unit. By design a primitive operates on
a specific media type, and contains methods for both extraction of features from the media
object and comparison of features. Feature extraction occurs during analysis phase when the
media object is inserted into the database. Upon feature extraction, the primitive returns to
the application program a compact representation extracted from the data called the feature

. vector [1]. Feature comparison is performed at query time. The result of feature comparison
is a value, which, depending on the query, either depicts a value returned from the query or
a score, indicating how close a query feature vector is to a target feature vector.

The video engine also uses several other concepts like weights, scores and schemas for managing
various combinations of primitives and for usefully combining the outputs of these primitives. The
reader is referred to Appendix A for a functional description of the Virage Image Engine Architec-
ture. The additional features of the video engine beyond the VIE [1] are:

Multimedia Capability: Unlike the Virage Image Engine, the video engine is designed to accept
multiple, potentially asynchronous media streams as a single data object. For the purpose of
this project, however, all the three different media, namely image sequences, audio and video
have been “frame indexed” to achieve media synchrony. Although it has not been done till
date, our multimedia engine is designed to work in conjunction with a video server for any re-
alistic application requiring on-line analysis of continuous video feed. This can be performed
with our engine because it can work in a synchronized-clock mode for multiple media streams
from an external driving software such as a video server. As part of our Phase Il development,
and for independent commercial deployment we intend to build application suites with com-
mercially available video servers from vendors like Oracle or Informix.

Time Based Media: Time based media like audio and video have to be treated as media streams
rather than as media objects. The key distinction being, that a media stream cannot be pro-
' cessed as a single entity due to its extent where as a media object can. For example, an image

9

can be processed as a single entity, whereas a video is processed one frame at a time and au-
dio is processed in terms of some suitable time buffer (typically 40ms). The VVE provides
the necessary support for dealing with temporal media streams of differing data rates. This
has significant implications in the way the media analysis function works. It extends the no-
tion of primitives of the Virage Image Engine to allow “multi-pass” primitives. Hence, un-
like the Image Engine, a primitive in the Media Engine can implement “backtracking” algo-
rithms. For example, algorithms to detect gradual scene transitions (such as a dissolve oper-
ation) have to pass through the media stream once to collect potential candidates for dissolve
boundary. It “looks ahead” downstream in search of a point in the media stream where the dis-
solve has already passed. Once such a point is detected, it revisits the media stream to locate
which of the potential dissolve transition points marked in the earlier pass are the true dissolve
boundaries. Use of the time-based media also allows a primitive to time-tag keyframes. This
helps to use a temporal constraint in the comparison of two sets of key frames in the process
of finding visually similar videos.

I
K
M
a E c M
2 Y A A b
c P U

E T

A A F T) I
s U P R I I o
s D T A o) 5
E T I M N

o o E P
o P
v N P R r
E M P R i X
N E M R I M o
¢ D E I M I Y

12 ld: o Q8 I [O L O
u A 1 I T I I
A T I v
E 1 v E v
D E
D v E
E

A \/ \/

THE VIRAGE VIDEO ENGINE

Figure 2: The Virage Video Engine

4.3 Image Sequence Primitives

The image sequence in video is the highest resolution channel. It provides the most detailed infor-
mation about the events that are being communicated or captured on the video. The image sequence
in a video can be indexed along two dimensions namely, visual and temporal. The VVE provides
primitives for extracting indexes along both these dimensions. The Virage KeyFrame Primitive
extracts visually significant keyframes to represent the visual content of the image sequence. The
Motion Primitive extracts indexes which describe the motion content of the image sequences.

4.3.1 The KeyFrame Primitive

The function of the keyframe primitive is illustrated in figure 3 (left). Given any image sequence,
the keyframing primitive extracts frames from the image sequence, which conform to the following

10

definition of an optimal key frame set.

Definition: Given the image sequence component I of a video V, the keyframe set K, is defined as
the minimal number of frames sampled from the video V which provides an adequate repre-
sentation of the visual content of the video.

The term adequate representation is application dependent. For example, in the context of a news
video retrieval and browsing environment, it may be necessary to extract both shot boundaries and
visually significant frames (keyframes), whereas in a film production environment, where most of
the videos are raw unedited dailies [8], just extracting the shot boundaries may suffice. On the
other hand, for non-produced video as may be created by mounting a video camera on a UAV, only
keyframes and no shot boundaries will be meaningful.

THE VIRAGE VIDEO THE VIRAGE VIDEO
SCENE SEGMENTATION MOTION EXTRACTION
Video KEYFRAME PRIMITIVE Video MOTION PRIMITIVE
In In Image Flow
Video Shot 8
Transition Computation
Detection
1 INTELLIGENT KEYFRAMING T MOTION ANALYSIS
l—. Actlvity based |—_ lAl::fesl“;lnw
shot sampling Y
Video Shots lNl;te':'nal
B: otion
K:syeframe Representation
¥ set
Index Extraction
| Keyframe
| Customizer

| T

Customized Motion Motlon Motlon Motlon
Keyframe Set Content Uniformity Panning Tilting

Figure 3: Left: KeyFrame Primitive Right: Motion Primitive

The Virage keyframe primitive (figure 3 (right)), is designed to support this application specific
nature of the keyframe set. The keyframe primitive first determines shot boundaries checking for
both abrupt and gradual scene transitions like dissolves, fades, and wipes. Within each shot it uses a
computationally efficient proprietary adaptive sampling algorithm, to extract an initial set of frames
from the video called the base key frame set. This set of keyframes is then processed using the image
primitive set supported by the VIE. The resulting set of frames is called the customized keyframe set,
which can be viewed as a summary of a unit of video footage. Following the parlance of the enter-
tainment industry, we call this summary an Inverse Storyboard. Since different applications have
different requirements for a summary video, the keyframe primitive has been designed to provide
the user some “knobs” to control and alter the customization process. The customization process
can be tuned by five parameters: the weights of the four basic image primitives supported by the
VIE and a threshold on the overall distance between successive base keyframes. Figure 4 shows the
effect of tuning the distance threshold to control the process of customization. It can be observed
from the screenshot that the similarity setting which produced fewer keyframes may sometimes fil-
ter out keyframes which are visually significant. In our experiments we have determined that in
most cases adjustment of some of the five controls produces a semantically acceptable summary.

The keyframe extraction process is discussed below. Each of the steps used is listed in order and
the details of the algorithm used in each step are presented. Given any video object V it is processed
by the following steps to extract keyframes.

11

Segmentation: This is the process of decomposing the video V into shots based on the location
of artificial scene transitions like cuts, dissolves and fades. A shot is defined as a continuous
camera take [8]. A proprietary algorithm is used for the process of detecting shot boundaries.

. The keysteps used in this algorithm are listed below.

1. Given any image V; in the video, compute a set of measurements based on some local
temporal neighborhood of £, namely ¢ — n,t + n.

2. The measurements set is typically a set of local image difference measures, a set of
global image difference metrics, a set of tuned measures for detecting special effects
used in soft transitions.

3. Each of these measures is thresholded into a three level measurement.

4. The thresholded measurements are combined using a decision table, to decide weather
a particular frame is a transition frame.

5. The last process in the shot segmentation is a temporal filtering step which groups tran-
sitions into transition segments based on temporal locality.

Fast Adaptive Sampling: The adaptive sampling process is tuned to apply to video shots (i.e. video
segments which do not contain any artificial edit effects). The key idea is that, from each shot
we should be able to extract a set of frames based on the activity in the shot. These set of
frames can then be run through a more expensive process of visual similarity based compar-
ison.

The adaptive sampling is a global process, in that it examines the entire shot before deciding

on the locations of the keyframes within the shot. The steps involved in the adaptive sampling
. process are listed.

1. The total number of samples extracted is a user definable quantity.

2. The distance between consecutive frames within the shot are computed and stored. The
distance can be any type of inter frame difference. These distances are typically avail-
able from the shot segmentation process.

3. The shot is then segmented into sub-shots bases on regions of uniform activity.
4. The required number of samples is distributed among the segments based on the ratio
of the activity in each sub-shot to the total activity in the shot.

Visual Feature Extraction: Once we have a set of adaptively sampled frames from each shot called
the base keyframe set. The visual properties of the base keyframe set is extracted using the
standard Virage image engine [1] and the Virage set of primitives.

Visual Filtering: Using the visual properties and the Virage similarity comparison, the base key
frame set is filtered into smaller sets of keyframes. This filtering process uses a user defined
threshold value which controls the number of keyframes chosen and a user defined weight
set which controls the visual relationship between keyframes.

12

4.3.2 The Motion Primitive

The Virage motion primitive extracts indexes into the image stream based on the motion content of
the image stream. Figure 3 (right) illustrates the high level structure of the Virage motion primitive.
The motion primitive operates on the image sequence and extracts from it the image flow [7, 5].
The image flow is a representation of the pixel motion between consecutive images in the image
sequence. The flow information is transformed into an internal intermediate representation which
is the basis for extracting the motion indexing information. The index extraction process indexes
the clip based on several simple properties of the motion with the video. The dimensions of the
motion index are:

Motion Content: This is a measure of the total amount of motion within a given video. From a
user’s perspective this translates to the action content of the video. For example, a talking
head video will have a very small motion content measure where as a violent explosion or a
car crash will typically have a high value.

Motion Uniformity: This is a measure of the smoothness of the motion within a video as a function
of time. For example, a smooth panning shot, or a tracking shot [8] will have a high value of
motion smoothness where as a video which has a staggered pan will have a low value.

Motion Panning: As indicated by the name, this dimension captures the panning motion (left to
right, or right to left motion of the camera). A smooth pan shot scores high as compared to a
zoom.

Motion Tilting: This is a measure of the vertical motion component of the motion within a video
sequence. Panning shots will have a low value as compared to videos which have a large
amount of vertical motion.

Since a video object is first split into shots and transitions, the motion primitive operates only on the
shot segments and not, for example, on dissolves. In the domain of news the motion primitive works
efficiently on most scenes. However, for some outdoor scenes which have a combination of camera
motion, multiple object motions and camera jitter, image flow computation becomes uninformative.
In our future work, we shall explore more motion processing techniques.

The detailed working of the Virage motion primitive is discussed below.

Flow Extraction: The image flow between a pair of frames in the video shot is extracted using
a proprietary image matching algorithm. The algorithm is fast and is tuned to operate on
realistic video sequences. No assumptions are made about the motion except the maximum
interframe motion. '

Flow Histograming: The interframe flow is processed and a histogram representation of the flow
is extracted. This is the intermediate representation used by the motion primitive.

Motion Labeling: The flow histogram is used as the basis for ranking the videos based on the dif-
ferent types of video queries.

13

4.4 The Audio Primitive

The audio track carries a significant amount of information in any produced video. The Virage audio
primitive is designed to process the audio component and segment the audio information based on
significant changes. The actual semantic information in the audio track is typically contained in
the speech portion of the audio track and requires sophisticated speech recognition technology [3]
for analysis. However from a video indexing and retrieval perspective coarser level changes in the
audio track provide very valuable index points into the temporal video stream. The Virage audio
primitive (Figure 5 (left)) was developed based on the technology of MuscleFish Inc. [12] an audio
search and retrieval company. We adapted their audio feature extraction capabilities to work in the
context of the Virage media object and primitive. The resultant audio primitive accepts an audio
stream and computes “audio keyframes” defined as segments over which the frequency bandwidth,
loudness, and brightness do not vary significantly. These segments are processed to compute audio
statistics (see [12] for details) for the segments in a manner similar to the image keyframes. Unlike
the image sequence primitives, the audio primitive allows the user to define exemplar-based classes,
leading to the following query classes:

1. Find an audio segment similar to a given query segment

2. Find in a given audio stream instances of audio segments belonging to a given predefined
class

3. Find instances of the audio segment that transitions from segment class A to segment class
B the following types of transitions within the audio stream.

For the news application we used these basic capabilities to determine the following audio seg-
ments:

Silence Zones: These are points in the audio stream which have minimal or no audio activity as-

sociated with them. Depending on the domain of the video, these index points are indicators
of important events within the video stream.

Speaker Changes: This is referred to as speaker segmentation in speech processing literature {11].
In case of news video, speaker changes indicate important events like hand off from reporter
to anchor person and vice versa, question, answer points during an interview, etc.

Speech-Music Changes: These are index points into video where music ends and speech begins or

vice versa. These transitions again indicate important points in the video from the information
content perspective.

Although the audio primitive functions reasonably for several cases we have experimented with, it
requires significant tuning in terms of threshold and time-window adjustments to fit into any spe-
cific application. Also, the exemplar-based classification framework used by the MuscleFish fea-
ture extraction process requires a large training set to distinguish between speakers, and sometimes
between music and speech. We believe we have to devise a two-pass algorithm to improve the
audio keyframing task by first finding oversegmented audio keyframes and then using a different
window and threshold set to prune the segments. In addition to such tuning, the level of indexing
provided by the current Virage audio primitive can be enhanced along several directions. One of

14

the directions is to provide primitives which can perform similarity based searching on the audio
track. This will allow for the audio track to be indexed based key sounds which occur in particular
applications [2]. Further primitives can provide even more sophisticated audio and speech process-
ing components like word spotting [10]. Primitives based on speech recognition can be added as
the technology matures and stabilizes [6].

4.5 The Closed Caption Primitive

The closed caption information when available encodes most of the speech component of audio as
ASCII text. Thus having a closed captioned video is equivalent to having a high accuracy speech
recognition system operating on the speech portions of the audio track. The closed caption signal
[9] is an encoded data signal in the unblanked portion of Line 21, Field 1 of the NTSC video signal.
The composite data signal has a clock run in signal, start bit and 16 bits of data. This results in
a data stream rate of approximately 480 baud. The encoded data contains information for display
formatting, language selection and the alpha numeric character information. The closed caption
information is decoded from the analog video signal using a special hardware decoder. The decoder
filters out the undesirable information such as display formats and outputs the ASCII text from the
captioning and some frame synchronization information. This ASCII text is stored and becomes
the input to the caption primitive.

The closed caption contains both alphanumeric and non-alphanumeric information, the latter
being used to designate transitions — including speaker transitions, topic transitions, and voice trans-
fer from an anchorperson to an on-location reporter. The caption primitive first preprocesses the
input stream to remove punctuations and non-informative symbols, and then parses it into lexical
tokens. The transition tokens are are accumulated into a separate feature. The words are filtered
through a stoplist, and are indexed into a variant of a balanced binary tree. This data structure acts
as our implementation of an inverted file, and also stores word frequencies and points of word oc-
currence (frame numbers) in the input stream. We plan to adopt a more robust implementation of
the text index at a future time. It may be noted that the closed caption index is used both as a search
tool and a navigational aid. As a search tool, it is used to answer a query like “Which video ob-
jects have the word Clinton mentioned in it?” As a navigational aid it is used to jump to “the next
(previous) topic (or speaker)” within the scope of a news broadcast. A difficulty encountered in
the implementation of the closed caption primitive is that despite an explicit frame synchronization
performed at the hardware level, the text stream always lags behind the actual frame of the spoken
word. In general, retrofitting the caption boundaries to speech boundaries needs to synchronize the
audio segments to the known speaker boundaries. We have not looked into efficient techniques for
the audio-text alignment in the course of this project, but plan to implement such a mechanism in
the next phase.

5 Building The News Retrieval Application

A complete video database management system using the VVE for content based video retrieval
needs a number of components besides the video engine. Figure 6 shows a high level view of the
News Retrieval application. The interactions between different modules are discussed by looking
at the insertion and retrieval processes.

15

Video Insertion: In the application prototype created for the project video data is collected and

digitized in a separate offline process. Therefore the task of insertion is to read in the predig-
itized streams of video and analyze it to compute the video feature vector. As discussed be-
fore, the design decision in this procedure is to determine what constitutes a storable chunk
of information for insertion. We determined that storing an entire news session (minus the
commercial breaks) as a single insertable unit is makes the storage object too long for load-
ing, querying and manipulation. Storing the information in terms of keyframe-segmented or
shot-segmented units, made the storage unit variable in size and also potentially too long to
manipulate. As a first pass the we decided to partition the video into about 30 second clips,
partitioned at the next higher caption boundary. This decision is far from optimal in several
situations, and we are exploring into finding an improved set of criteria to determine a stor-
age unit of video. Once the input video is partitioned into these storage units, the collection
management module keeps a record of all information required to access the feature vector,
pointers to the original video data, and video thumbnails (vicons). Currently we have not
used any other information about the video other than the primitives described earlier. Ata
later time any collateral video data like video name, production date, etc., will be stored in the
metadata server, through the metadata management module. In our plan toward commercial-
ization of the technology developed through the project, the metadata server is envisioned to
be an external commercial DBMS. In Phase II of the project we shall determine how to create
a uniform interface to communicate with a relational or object-oriented database for insertion
and querying of videos. It may be noted that we separate the collection management mod-
ule from the metadata management module, because in an actual application, the metadata
management module will possibly reside at the server end while the collection management
module will be at the client side and communicate with the metadata server. In a similar vein,
the data management module is the client side of the video server that knows which video
server files need to be analyzed and/or played back, and in what order.

Video Retrieval: During the query process, the query processor module analyses the user query

and suitably configures the VVE. The collection management module then accesses the meta-
data for objects in the collection and calls the video engine with the appropriate feature vec-
tors.The video engine compares the feature vectors and returns the results of the query. The
results of a query are managed by the result processor module and presented to the user through
the graphical user interface. It is necessary to point out that just like a commercial database
front-end needs different forms to formulate different queries, we need very different inter-
faces both to formulate different user queries in the most expressive manner, and to present
the results in intuitive ways. Although we have not emphasized on user interfaces for this
project, we have created the basic the software infrastructure for management of multiple
query classes. The details of currently handled query classes are described in the following
subsections.

Multi-modal Access to Video Information

The distribution of information across the different channels in the video signal depends very heav-
ily on the application domain from which the video is drawn [4]. For example, typically news video

16

has the highest information content in the audio channel, followed by the image sequence channel.
Whenever available the close caption channel contains the same information as the speech com-
ponent of audio. Table 1 shows the relative distribution of information in the different channels
for different types of video. In general produced video has high information content in the audio
channel and medium information content in the video channel. Depending on the availability the
information in the caption channel can be either high or none. In video sources like security camera
videos, the information content will be high in the image channel and medium in the audio channel.
An application like aerial survey on the other had capture information only in the visual channel.
Thus depending on the application, the indexing strategy for video changes dramatically. The Vi-
rage video engine addresses this problem by providing primitives which encapsulate different types

of indexing functionality. The engine can be reconfigured using a different set of primitives based
on the application.

Video Source | Image Channel | Audio Channel | Caption Channel
Produced Medium High High/None
Security High Medium None

Aerial Survey | High None None

Table 1: Information Distribution across channels

Based on interactions with potential users of video databases we have identified multi-modal

content cueing as one of the central problems in video data retrieval. The following is a definition
of the video content cueing problem.

Video Content Cueing: Definition: [8] Given a video V of time duration T the task of marking

(digitally) the points of potential interest C = { #;, to, t3....t; } based on some user specified
content description or query.

The content queries that can be supported are dependent on the primitives that are supported by
the VVE. Similar to the image engine [1] the video engine also supports user defined primitives.
The set of default primitives for the VVE have been discussed in section 5.1. The following is a
discussion of the types of queries that can be issued based on the default video primitive set namely,

keyframe, motion, caption and audio.
5.2 Image Sequence Queries

These are queries which retrieve video based solely on the image sequence content of the video.
Such queries are interesting mainly in application domains where the video content is primarily
visual. The types of queries supported are the visual similarity queries and the motion ranking
queries. '

5.2.1 Visual Similarity Queries

These queries rank all the objects in video database based on its similarity to the query object. The
query object can be either an image or another video.

17

Video Queries: Here the query object is the video. Such video queries can be used to search a
collection of videos for clip containment, i.e. to find other videos that contain, the query clip
or other video objects in the database that are contained within the query video clip.

Image Queries: Here the query object is an image. This query basically answers the question Find
me all videos which contain images similar to the query image. Here image similarity can be
defined by the user in terms of the standard Virage image primitives [1] namely, color, texture,
structure and composition.

Visual Dictionary Queries: The query binds a text term (e.g. Bill Clinton) to an artificial video
object created by composing a number of image examples describing the term (in this case
different images of Clinton as normally shown in the news). The Visual Dictionary query
performs a “nearest video” query on the database with the artificial video as the query object.
As aresult, the system ranked the stored video objects in terms of their closeness to any of the
constituent images of the “dictionary”. Effectively, this implementation results in a “society
of disjunctive models” query against the image database.

5.2.2 Motion Ranking Queries

These queries rank a collection of videos based on the motion properties of choice. For example,
using the motion content aspect, results in each video object being assigned a number between 0
and 100 based on the total amount of motion in the video object. Using the motion content rank-
ing queries on different on a database of generic video clips, and on a database of news video we
experimented with, have yielded the following interesting results.

Object Versus Camera Motion Clustering: Video Objects with no motion or very little motion
have low values and objects with significant camera and object motion have high values on
the motion content index. Videos with only object motion rank in the middle.

Commercial Clustering: Commercial on cable television feed typically get a high measure on this
index since they tend to have a significant amount of motion within a short time span.

Talking Head Clustering: Talking head segments in news videos tend to cluster with low values
of the index.

5.3 Closed Caption Queries

In our current implementation the closed caption queries can only take single words to locate stor-
age units which contains the word. As mentioned, navigation by topic and reporter transition is also
allowed. However, we have not implemented a full text retrieval system on closed-caption informa-
tion at this stage. We believe it is a better engineering solution to use our closed caption primitive
as a uniform interface to communicate with an industrial strength text retrieval system.

5.4 Combined Queries

An application which uses the VVE should combine the results of various queries and present a
combined multi-modal query to the user. Using multimodal queries results in a reduced set of video

18

clips and reduced number of cue points with in each video object. This results in a reduction of the
total information returned to the user in response to a combined query. An typical multimodal video
query is presented below.

Find Videos with

Caption = <Bill Clinton >

(caption subject index : caption primitive)
Visual = <Clinton Image>

(visual image query : keyframe primitive)
Motion = < High Action >

(motion content query : motion primitive)
Audio = < Speech >

(music speech transition: audio primitive)

We are currently experimenting to determine how to use the video primitives to generate scores for
each of the video objects in the database and use these distances to select portions of the database.

5.5 Visualizing Video Query Results

One of the challenges of dealing with a multi-modal data like video is the design of an intuitive
Graphical User Interface. Virage has prototyped several graphical user interfaces for video database
application. Figure 7 is graphical user interface for a prototype video database built using the VVE.
The Figure shows a results window which displays several vicons. Vicons are graphical representa-
tions of video constructed by sampling frames out of the original video and compositing them into
a single image. The Figure also shows the query window which allows the user to switch between
the different distinct query modalities and also allows the user to query based on a particular type
of index within each modality.

6 System Evaluation

This section provides an evaluation of our prototype Video Data Management System. Our purpose
is to first establish hard requirements for a real-world application, estimate how far our system has
reached in meeting these requirements, and identify areas that need further development. With this
broad goal, Section 6.1 presents the requirements for a complete video data management system
as a whole. Section 6.2 lists out the various components used and the criteria for evaluating each
of these individual components. Section 6.3 presents the evaluation of the existing system against
each of these criteria.

6.1 System Evaluation Criteria

The purpose of the video data management system is to provide the user with, a set of procedures
and tools for managing and accessing large quantities of video data. The set of criteria presented
here attempt to quantify the success of a system in achieving this goal.

19

Meta Data Scalability: As a video gets more complex, or the length of a video increases, the meta-
data computed from the video also grows. Metadata scalability refers to the system’s ability
to cope with this growth.

Raw Video Scalability: This deals with access of the physical video files for browsing and search-
ing. As the size of video collection grows, every search operation results in the potential
access and manipulation of increasingly greater number of voluminous video files. A real
system needs to offer methods to minimize unnecessary access to the raw physical data.

6.2 Component Evaluation Criteria

This subsection presents a set of evaluation criteria for each individual component used in build-
ing the Video Data Management System. The evaluation criteria are qualitative for many of the
subcomponents and are better specifiable for others. As the system development progresses, the
evaluation criteria will become more concrete and quantitative.

Hardware Subsystem: The purpose of the hardware subsystem is to provide an easy, usable and
economical way to convert video data from a standard VHS video tape to a digital format
which can reside on a computer disk. The hardware subsystem should also provide an easy
way to access the original media. The evaluation criteria for the hardware subsystem are dis-
cussed below.

1. Speed of Conversion: This is the time it takes to convert data from a VHS tape to digital
compressed video.

2. Quality of Digital Video: The quality of digital conversion can be measured in terms of
the resolution, both spatial and temporal, of the digital video as compared to its analog
counterpart.

3. Access to Original Media: This is a measure of the accessibility of the original media
based on the digital proxies that are returned from the search process.

4. System Cost: The cost of the entire system including the equipment and the media cost.

Software Subsystem: The software subsystem is responsible for providing the user with the con-
tent based video access facility. The following is a list of key components of the software
subsystem and the evaluation criteria adopted for each of these components. There are sev-
eral other software components which provide auxiliary facilities like, video insertion, ma-
nipulation, basic editing functionality, etc., which are not discussed here.

Video Engine: Analysis and Comparison Component: This provides the core functional-
ity for content based search and retrieval. This component uses the media files supplied
by the user and operates on it using the the standard Virage video primitive set namely,
the keyframe, motion, audio and caption primitives. This evaluation measures the rep-
resentational adequacy of existing primitives and identifies new primitives for unrepre-
sented dimensions.

20

Multimedia Integration: Given that video is has several different synchronized tracks of
information, there needs to be techniques which will use the synergy between the dif-
ferent media components in both the analysis and the comparison during queries. The
two aspects for evaluation here are

1. The cooperation of the different primitives during analysis time to improve the fi-
delity of the extracted representation.

2. The use of queries which use multiple media to perform more effective video search
and retrieval.

Graphical User Interface: Video presents a challenging task for designing graphical user
interfaces due to its spatio-temporal and multi-modal nature. The following are some
of the criteria for evaluating video graphical user interfaces.

1. Visual Representation: These primarily relate to how well the graphical user in-
terface presents the visual aspects of video. Ideally the iconic representation of a
video would allow the user to easily visualize its information content. Such content
consists of properties such as visual appearance, length of the video, busy-ness of
the video in terms of its component scenes, busy-ness in terms of motion, etc.

2. Audio Representation: Representing the audio content of a video through a graph-
ical user interface is an extremely challenging problem.

3. Auxiliary Data Representation: Representing other temporal data like closed cap-
tioning, user annotation, etc.

4. Query Formulation: The graphical user interface must also support the formula-
tion of user queries. GUI’s for specifying motion direction and motion magnitude
present challenging problems.

6.3 Evaluation

Here we list each of the evaluation criteria discussed above and provide an evaluation of our current
video data management system against these criteria.

System Evaluation: Meta Data Scalability: Given a video object that is represented by n keyframes
and another object represented by m keyframes, the comparison time is O(m x n). For
a database with N video objects the total search time will be O(N x n x m).

The prototype system we have built has been tested for video databases of 30 minutes.
The searching time for such small collections is almost realtime and hence the system
can perform without any form of indexing. But as the video collections become more
realistic in size (more than 5 hours), the searching time without some form of index-
ing will become unacceptable to the user. Video Indexing is one of the key problems
that needs to be addressed before content based video searching becomes a commercial
reality.

To develop a video database system of commercial capacity will require that the meta-
data be stored in a suitable database with a well designed indexing scheme. There are
several issues here regarding the choice of databases (object oriented vs relational) and
design of suitable indexing schemes which needs to be addressed.

21

Data Access Scalability: The prototype system uses the file system for storing the video
data. The data is low resolution (120 x 160, 30fps) mpeg1 proxies. The typical length
of these clips is lesser than 5 minutes. Thus the problem of accessing, retrieving and
playing these video clips from the file system has not posed any significant problems.

A typical industrial strength video database for example a news video archive will have
100’s to 1000’s of hours of video in a collection. And the resolution of the data will
typically be (480 x 640 x 30fps). This will require the use of industrial strength Video
Servers to store the video data.

Video servers that are currently available from commercial vendors are typically geared
towards the video on demand market. They are tailored for complete video object re-
trieval with a VCR paradigm for viewing the video. There are several issues to be ex-
plored with respect to how such video servers can be adapted to the browsing and partial
viewing situations that are encountered during the content based retrieval situations in
a video data management system.

Hardware Subsystem: The prototype hardware system we have built is very good for an experi-
mental video database system. It is been primarily designed to support the process of devel-
oping video processing and manipulation algorithms.

Speed of Conversion: The process of converting data from a VHS video tape to digital com-
pressed video is currently an offline process. The steps involved in this conversion are

1. Record the VHS tape onto a CVR laser disc.

2. Play the CVR disc under remote RS232 computer control from the host computer.
3. Set the laser disc player into the frame advance mode.
4

. Use the digitizer card and software to grab the current frame and advance the disc
to the next frame of video.

5. Once the set of frames for the segment of interest have been digitized, use the soft-
ware compression algorithm to generate the mpeg 1 file.

This entire process typically will take about 3 to 4 times the length of the VHS video to
complete. An industrial capacity video data management system will require an input
system which can generate the compressed digital video in realtime and store it on disk.
There are several such commercial systems. We need to explore this space of video
compression hardware and the associated integration issues.

Quality of Digital Video: The prototype system can digitize video at full NTSC resolution
(640x480) at 30fps.

Access to Original Media: This is one of the significant advantages of the prototype sys-
tem. Since the original data is stored on a video disk. We have complete computer
controlled remote random access to the original video media. This is a very useful for
browsing, the video at full resolution on a commercial television monitor.

System Cost: The cost of the prototype system is lesser than the cost of the high end mpeg
digitization hardware. However there are several low cost options available on the PC
platform. The performance and quality of these options are to be explored.

22

Further Development: The further development of the hardware subsystem will be aimed
toward making the digitization process a realtime process. This also implies the need

for a large capacity online storage facility for storing the full resolution video data along
’ with the software infrastructure for managing the video data collection.

Software Subsystem: Video Engine: Analysis: The scope of this evaluation will include the cur-
rent set of primitives and the performance of these primitives on the current data set.

Evaluation of current primitives: The evaluation will focus on

Keyframe Primitive: The key framing algorithm in the current prototype uses a

two pass approach. The first pass detects shot boundaries and extracts an over
sampled set of frames from each shot. The second pass uses visual similar-
ity based filtering to filter out visually redundant frames generated by the first
pass. The algorithm provides the user the freedom of defining visual similar-
ity in terms of the thresholds and weight sets used in the visual filtering. The
approach is completely domain independent.
There are several fronts on which the performance of the keyframe primitive
can be improved. These include, the tuning of the adaptive sampling algorithm
and designing methods by which the user can define the objects and events of
interest in a particular domain.

Motion Primitive: The motion primitive at this time extracts coarse motion mea-
surements from the video sequence. These measurements are used to rank the
videos in terms of motion properties like, motion amount, motion smoothness,
panning and tilting.

’ Experiments on databases of commercially produced video have indicated that
the motion amount provides an interesting way of ranking videos. However, on
the test databases, the other queries of motion smoothness, panning and tilting
did not provide very meaningful results. This is mainly due to the nature of the
data, which mainly have sequences which combine panning, tilting and zoom-
ing.

Further experiments need to be conducted on identifying suitable domains of
video where these attributes provide meaningful results. We also need to ex-
plore the types of attributes that can be used for general commercial video broad-
casts.

Audio Primitive: The audio primitive is designed to segment audio stream into
segments based on criteria like, speaker transition, music to speech transitions,
silence zones, etc. These features provide a very low level index into the video
based on the audio samples.

Further developments in audio primitives can address the problems of audio
keyframing, keyword spotting, speaker identification and gradually evolve to-
wards supporting complete speech to text conversion.

Caption Primitive: The caption primitive provides the basic functionality of search-
ing through video using the associated captioning. The search capabilities can
be improved to a great extent by using commercially available text search en-
gines. The integration with such engines will have to preserve the temporal

23

tagging of the text data.

Further Developments: There are several other new primitives which can be used to
index and retrieve the video, some of are listed below.

Object Track Primitive: This represents the location and motion of objects within
a given video clip.

Audio Keyword Primitive: This primitive indexes the video based on keywords
recognized from the audio track.

Key Event Primitive: This primitive indexes the video be detecting user defined
key events in the image stream of the video.

Multimedia Integration: The video engine used in the prototype is a true multimedia anal-
ysis and comparison engine. The media type is completely transparent to the engine, as
it uses a standard media encapsulation for all types of media. Evaluation of the mutli-
media capability can be performed based on the following criteria.

Cooperation during Analysis: The prototype does not utilize the synergy that exists
between the three synchronized media streams namely image sequences, audio and
captions. For example, certain types of transitions in the audio in combination with
corresponding scene transitions in video can be used to trigger very specific domain
dependent primitives. Further development of the multimedia engine will examine
the synergy and cross coupling between different media primitives.

Multi-modal Queries: Our prototype system can repond to queries in each of the inde-
pendent media. The system does not have any facilities for combining the query re-
sults from the different media. Further developments along these lines can include
a multi-media query optimizer which can launch a multi-modal query in response
to a high level user query, combine and present a unified result to the user.

Graphical User Interface: The design of graphical user interface for a multi-modal tempo-
ral media like video is a very complex problem. There challenges include the presen-
tation of time on a spatial graphical interface, presentation of a non visual media like
audio and the presentation of the synchronization between the media.

Visual Representation: The prototype system, uses a simple vicon which is compos-
ite image generated by stacking together the different a fixed number of samples
taken from the beginning of each video object. There are several different represen-
tations that need to be explored like, the use of active vicons, where the use controls
the appearance of the icon using the mouse, making vicons using only keyframes,
making icons using animated gifs of the keyframes, etc.

Audio Representation: The prototype built has not attempted to represent audio. There
are several different possibilities from representing the waveform of the audio as
an icon along with the vicon, representing the type of audio in a video clip using, a
coloring scheme for different types of audio and playing back audio at higher rates.

Auxiliary Data Representation: This is an issue that has not been addressed in the
current system. There can potentially be different types of media associated with

a video stream like caption text, user annotation, graphics, etc. Further system de-
velopment will address these issues.

24

The evaluation presented in this section has discussed several criteria for evaluating video data
management systems. The current prototype system has been evaluated against these criteria and
the short commings and strengths of the system have been discussed.

7 Conclusions

We conclude this report with a brief recapitulation of our goals, major accomplishments, self eval-
uation and future targets.

The primary purpose of this project was to determine how feasible it is to create a real-life video
information retrieval system which will meaningfully use both the visual and the linguistic channels
of information. We included an audio component as a third source of information and set ourselves
to devise and implement techniques of using all three media together to analyze a generic video
stream. The objective of the project was to develop an enabling technology which provides a user
with the means to (semi-automatically) annotate, search for information and intelligently browse
through long videos.

Aimed at this goal, our foremost achievement was to create a complete hardware and software
infrastructure where a user can put in an analog video tape to the system, and the system will convert
it to a queriable and browsable digital video collection. The most important component of this in-
frastructure was the design of the Virage Video Engine with truly multimedia analysis and retrieval
capability. Secondly, as part of our video analysis toolset, we developed a potentially commer-
cializable video summarization software module called the “inverse story board”. This component
used our activity-adaptive two-pass keyframe extraction technique. Thirdly, we created a motion
analysis suite which partially analyzes camera and object motion properties in a scene. When fully
developed, this suite is likely to have demand in motion pictures and video editing industry, as well
as in object tracking and surveillance tasks. Fourth, we successfully customized and integrated two
commercial technologies into the fold of the Virage Video Engine, viz. the MuscleFish Engine for
audio analysis, and a specially designed closed caption decoder for frame-based caption access.
With these components built into the Virage Video Engine, we have demonstrated a prototype sys-
tem having a limited multimedia query and navigation. Even this small-scale demonstration pro-
totype has generated significant interest among video database providers and possible future users
such as in the broadcasting industry.

Equally important as all our achievements in this project is the clarity of understanding we have
gained into the actual engineering requirements of the video analysis, storage and retrieval prob-
lem. We have evaluated ourselves against very hard, realistic criteria that must be met with, for
our efforts to evolve into an “industrial strength” product for the defense and commercial markets.
As detailed in Section 6.3 we need further development to make our algorithms and system de-
sign more scalable, have more efficient and domain specific video analysis and comparison tools,
develop methods to explicitly incorporate user-requirement profiles into our analysis and retrieval
framework, and develop more effective cross-media indexing and query facility. We will focus on
these areas of research in Phase II of the project.

25

References

[1] J Bach, C Fuller, A Gupta, A Hampapur, B Horowitz, R Humphrey, R Jain, and C Shu. The
virage image search engine: An open framework for image management. In Storage and
Retrieval for Still Image and Video Databases 4, pages 19-28. The International Society for
Optical Engineering, Feb 1996.

[2] T Blum, D Keislar,] Wheaton, and E Wold. Audio analysis for content based retrieval. Tech-
nical report, Muscle Fish, 2550 Ninth Street, Suite 207B, Berkeley, CA 94710, 1996.

[3] J S Denton and C R Taylor. Final report on speech recognition research: December 1984

to april 1990. Technical report, School of Computer Science, Carnegie Mellon University,
Pittsburg, PA, 1990.

[4] Arun Hampapur. Designing Video Data Management Systems. PhD thesis, The University of
Michigan, 1994.

[5] Berthold K. P. Horn and Brian G. Schunck. Determining optical flow. Artificial Intelligence,
17:185-203, 1981.

[6] X Huang, Fileno Alleva, H Hon, Hwang, and R Rosenfeld. The sphinx-11 speech recogni-
tion system: An overview. Technical report, School of Computer Science, Carnegie Mellon
University, Pittsburg, PA, 1992.

[7] Ramesh Jain, Rangachar Kasturi, and Brian G Schunck. Introduction to Machine Vision. Mc-
Graw Hill, 1995.

[8] Ira Konigsberg. The Complete Film Dictionary. Penguin Books, 1989.

[9]1 John Lentz, David Sillman, Henry Thedick, and Evans Wetmore. Television captioning for
the deaf signal and display specifications. Technical report, PBS Engineering and Technical
Operations, Public Broadcasting Service, 475 L’Enfant Plaza, S.W, Washington D.C, 20024,
May 1980.

[10] Wilcox and Bush. Hmm-based word spotting for voice editing and indexing. In Proceedings

of the Second European Conference on Speech Communication and Technology, September
1991.

[11] Wilcox, Chen, Kimber, and Balasubramanian. Segmentation of speech using speaker iden-
tification. In Proceedings of the International Conference on Acoustics Speech and Signal
Processing, April 1994.

[12] Erling Wold, Thom Blum, Douglas Keislar, and James Wheaton. Content-based classification,
search and retrieval of audio. IEEE Multimedia Magazine, pages 27-36, Fall Issue 1996.

8 Appendix A

A Functional Description of the Virage Image Engine

26

8.1 Data types

A content-based information retrieval system creates an abstraction of the raw information in the
form of features, and then operates only at the level of the abstracted information. For visual in-
formation, features may belong to five abstract data types: values, distributions, indexed values,
indexed distributions, and graphs. A value is, in the general case, a set of vectors that may repre-
sent some global property of the image. The global color of an image, for example, can be a vector
of RGB values, while the dominant colors of an image can be defined as the set of k most frequent
RGB vectors in an image. A distribution, such as a color histogram is typically defined on an n-
dimensional space which has been partitioned into b buckets. Thus, it is a b-dimensional vector.
An indexed value is a value local to a region of an image or a time point in a video or both; as a
data type it is an indexed set of vectors. The index can be one-dimensional as in the key-frame
number for a video, or it can be multi-dimensional as in the orthonormal bounding box coordinates
covering an image segment. An indexed distribution is a local pattern such as the intensity profile
of a region of interest, and can be derived from a collection of b-dimensional vectors by introduc-
ing an index. A graph represents relational information, such as the relative spatial position of two
regions of interest in an image. We do not consider a graph as a primary type of interest, because
it can be implemented in terms of the other four data types, with some application-dependent rules
of interpretation (e.g. transitivity of spatial predicates, such as left-of). Therefore, we shall leave
it outside the scope of this report.

It follows from the foregoing discussion that vectors form a uniform base type for features rep-
resenting image content. The primary data type in the Virage Engine is a (indexable) collection of
vectors. The primary operators on this abstract data type are:

o create collection - This operation creates an empty collection of vectors. The specific form
of the collection (e.g., list, set, multiset) is dependent on the implementation.

e create vector - This operation takes a collection, an image and a function as arguments and

extracts a specific feature vector from the image. The computed vector is placed in the named
collection.

e extract - This is a generic operation to access an element of the collection. Its arguments are
the collection and a user-specified function to specify the element of interest in the collection.

This is a non-destructive operation and leaves the initial collection unaltered. This function

can utilize any indexing schemes available to the application.

o distance -This operation compares two vectors and returns a measure of the distance between

them. It is required that each vector of a collection has a corresponding distance function for
comparison.

e combine - This operation creates a new vector by combining two given vectors with an ad-
missible user-specified function.

o delete vector - This operation is required to free the memory associated with a particular
vector.

o delete collection - This operation deletes the collection from transient and/or persistent mem-
ory.

27

8.2 Primitives

In terms of the Virage Engine, a collection of vectors representing a single category of image infor-
mation is called a primitive. A primitive is a semantically meaningful feature of an image. Thus
color, texture, and shape are all general image primitives. Of course, not all primitives will be ap-
plicable across all images. For instance, a color primitive may have no relevance with respect to
X-ray imagery. In practice, a primitive is specified as a 6-tuple of the following values:

e Static information

— primitive_id - a unique primitive identifier

— label - a category name for the primitive

e Data retrieval functions

— compute_function - This function accepts the image data and computes its visual fea-
ture data and stores it in a buffer.

— distance_function - This function returns the similarity score for its associated primi-
tive. The query operations of the engine call this function with two data buffers (pre-
viously created with compute_function()) to be compared. The score which is returned
must be in the range from [0.0...100.0]. For maximum discrimination, the spectrum of
distances returned for this primitive should be spread over this range evenly or in a rea-
sonably smooth distribution.

¢ Data management functions

— swap_function - The engine takes full responsibility for handling the byte order differ-
ence between hardware platforms for easy portability. This allows data that is computed
on a certain platform to be easily used on any other platform, regardless of byte-order
differences. Each primitive supplies this function which will do the byte-order conver-
sions for its own data. The engine will automatically use this function when necessary,
to provide consistent performance across any platform.

— print_function - This function is used to print out the desired information of the asso-
ciated primitive.

After a primitive is defined, it is registered with the Virage Engine using the RegisterPrimitive()
function. In addition to the above primitive information, an estimated cost of comparison may also
be supplied for the primitive, to aid in query optimization performed by the engine.

8.3 Schema definition

A Virage Engine schema is defined as a 2-tuple: a schema id, and an ordered set of primitives. Sim-
ilar to primitives, the Virage Engine is notified of a new schema by a RegisterSchema() function.
The primitive IDs referenced here must have previously been defined using RegisterPrimitive(), or
must be one of the built-in primitives (see Section 8.4.2). The order in which the primitives are
referenced dictates the order in which their functions are called during feature extraction (but not

28

during query processing). This allows primitives to work synergistically and share computational
results. A single application is allowed to define and use multiple schemas. The Virage Engine op-
erates as a stateless machine and therefore does not manage the data. Hence the calling application
manages the storage and access of the primitive data computed from any schema. The following
paragraphs describe the types of operations available to applications utilizing the Virage Engine.

Before an application can determine the similarity between an image description and a set of
candidate images, the images must be analyzed by the engine. The resulting feature data is returned
to the caller to be used in subsequent operations. Naturally, if an image is to be a candidate image in
future operations, the feature vector should be stored in a persistent manner, to avoid re-analyzing
the image.

¢ analyze_image - This function accepts a memory buffer containing the original image data. It
performs an analysis on the image by invoking the analysis functions of each primitive. The
results of this computation are placed in memory and returned to the caller, along with the
size of the data. Maintenance and persistent storage of this data is the caller’s responsibility.
Eventually, these structures are passed into the image comparison entry points.

o destroy_features - this function is used to free the memory associated with a visual feature
that was previously returned from analyze_image(). Typically, this is called after the appli-
cation has stored the data using the associated persistent storage mechanism.

Any image retrieval application requires the ability to determine the similarity between the query
description and any of the candidate images. The application can then display the computed simi-
larity value of all of the candidate images, or convey only the most similar images to the user. To
do this, similarity scores are computed by the engine for the relevant candidate images. An applica-
tion will call the comparison functions provided by the engine. These functions will return a score
structure, which indicates the similarity between the images being compared. The score structure
contains an overall numerical value for the similarity of the two images, as well as a numerical value
for each of the primitives in the current schema. This allows applications to use the values of the
individual primitive comparisons, if necessary. Following are some of the functions relating to the
management of the score structures.

o create_scores - This function is used to create a scores structure for later use by the
function compare_into_scores(). It is a cache of primitive level scoring information that can
be efficiently reused to compute a new overall score given a new set of weights. The applica-
tion is responsible for managing the returned score structure. The function destroy_scores()
must be called to deallocate the memory for this structure.

e get_score - This function is used to access individual score values from the score structure.
It provides the mechanism for retrieving the scores for individual primitive values within the
structure.

o refresh_scores - This function will compute an overall visual similarity distance given a cached
scores structure (returned from compare_into_scores()) and a new set of weights. This com-
putation is very efficient compared to re-computing all of the score data from the feature vec-
tors.

e destroy_scores - This function deallocates a previously allocated score structure created by
create_scores().

When two images are compared by the engine, each of the primitives in the current schema are
compared to give individual similarity values for that primitive type. Each of these scores must
then be used to provide an overall score for the comparison. In certain situations, these individual
primitive scores may need to be combined differently, depending on the desired results. By altering
the ways these individual scores are combined, the application developer has the ability to indicate
relative importance between the various primitives. For example, at times the color distribution
of an image will be much more important than its fexture characteristics. There may also be cases
where only some of the available primitives are required in order to determine which images should
be considered the most similar. Applications are given flexibility in how the overall score is com-
puted through use of the weights structure. The application has control over the weight values for
any given comparison through the weights structure, and the following functions:

e create_weights - This function is used to allocate a weights structure for use in the compare
functions. The associated schema._id will determine the specific format of the structure.

e destroy.weights - This function is used to free the memory previously allocated with cre-
ate_weights().

e set_weight - This function sets the weight in the weights structure identified by the given
primitive_id, which identifies the primitive whose weight is to be set. The value should be

a positive floating point number. In general, weights are normalized before use by calling
normalize_weights() .

e get_weights - This function is used to extract an individual weight value from a weights struc-
ture.

Every application will have unique requirements in the way they determine which images are
to be considered most similar, and how to efficiently manage a changing set of results. Certain ap-
plications may need to do an exhaustive comparison of all images in the candidate set, while others
are only “interested” in a certain set which are most similar to the query description. Certain appli-
cations (or situations) may also require the ability to quickly manipulate the relative importance of
the primitives, using the individual primitive scores and weights, as discussed above. Some of the
more common comparison functions which address these requirements are described below:

e compare - This is the simplest entry point for computing the overall visual similarity for two
given images, represented by their respective visual features. The caller passes in a weights
structure and compare() ’computes and returns the weighted overall score, which is a numer-
ical value in the range [0.0...100.0]. This function can be used when a score is required for
every candidate image. If only the top N are required, the function compare_less_than() may
be more appropriate. Subsequently, if scores are desired for additional sets of weights, then
use compare_into_scores().

e compare_less_than - This function can be used for optimized searches in which the scores of
every single candidate image are not required. A threshold similarity distance is passed in to

30

indicate that any image whose score is above the threshold is not of interest for this search.
As soon as the engine determines that the image is outside this range, it terminates the sim-
ilarity computation and returns a flag to indicate that the threshold has been exceeded. This
provides a significant performance boost when fop N style searches are sufficient. Again, it

is the application’s responsibility to determine the appropriate threshold value for each com-
parison.

e compare_into_scores - This function also performs comparisons, but it returns a scores data
structure that caches scoring information from each primitive. The score data, like the vi-
sual feature data, must be managed by the application. It can be used effectively in situations
where a ranking of candidate images is desired for several sets of weights. One compan-
ion function to this is the refresh_scores() function which can quickly compute a new overall
score given one of these score structures and a desired set of weights. It is also possible for
the developer to use get_score() to extract component scores from the structure and perform
a custom combination of these to achieve a final score.

8.4 The Search Engine
8.4.1 Primitive design

The “pistons” of the Virage Engine are the primitives. A primitive encompasses a given feature’s
representation, extraction, and comparison function. In addition to the formal engineering require-
ments discussed in Section 8.2, there are a number of heuristics which lead to effective primitive
design. These design constraints are not hard rules imposed by the engine architecture, but rather
goals that lead to primitives which are “well-behaved”. For a given application, an engineer may

choose to intentionally relax certain constraints in order to best accommodate the tradeoffs associ-
ated with that domain.

e meaningful - Primitives should encode information which will be meaningful to the end-

users of the system. Primitives, in general, map to cognitively relevant image properties of
the given domain..

e compact - A primitive should be represented with the minimal amount of storage.

o efficient in computation - Feature extraction should not require an unreasonable amount of
time or resources.

e efficient in comparison - Comparison of features should be extremely efficient. The formu-
lation should take advantage of a threshold parameter (when available), and avoid extraneous

processing once this threshold has been exceeded. The distance function should return results
with a meaningful dynamic range.

e accurate - The computed data and the associated similarity metric must give reasonable and
expected results for comparisons. '

e indexable - The primitive should be indexable. A secondary data structure should be able to
use some associated value(s) for efficient access to the desired data.

31

8.4.2 Universal primitives

Several “universal primitives” are included with the Virage Engine. These primitives are universal
in the sense that they encode features which are present in most images, and useful in a wide class
of domain-independent applications. Each of these primitives are computed using only the original
data of the image. There is no manual intervention required to compute any of these primitives.
A developer can choose to mix-and-match these primitives in conjunction with domain specific
primitives (see Section 8.4.3) in order to build an application. These primitives have been designed
based on the above heuristics.

e Global color - This primitive represents the distribution of colors within the entire image.
This distribution also includes the amounts of each color in the image. However, there is no
information representing the locations of the colors within the image.

e Local color - This primitive also represents the colors which are present in the image, but
unlike Global color, it emphasizes where in the image the colors exist.

e Structure - This primitive is used to capture the shapes which appear in the image. Because
of problems such as lighting effects and occlusion, it relies heavily on shape characterization
techniques, rather than local shape segmentation methods.

e Texture - This primitive represents the low level textures and patterns within the image. Un-
like the Structure primitive, it is very sensitive to high-frequency features within the image.

8.4.3 Domain specific primitives

Applications with relatively narrow image domains can register domain specific primitives to im-
prove the retrieval capability of the system. For applications such as retinal imaging, satellite imag-
ing, wafer inspection, etc., the development of primitives that encode significant domain knowledge
can result in powerful systems. Primitives should obey the design constraints of Section 3.1, but
there is considerable flexibility in this. For example, a wafer inspection primitive may be designed
to look for a specific type of defect. Instead of an actual distance being returned from the distance
function, it can return 0.0 if it detects the defect, and 100.0if not. In addition, primitives can provide
their own “back door” API’s to the application developer, and expose parameters that are controlled
independently from the weights interface of the Virage Engine. There is also ample opportunity for
a set of domain primitives to cooperate through shared data structures and procedures (or objects)
in such a way that they can economize certain computations and information. Figure 8 shows some
of the key components of the Virage Image Search Engine.

32

Figure 4: Two different sets of customized keyframe sets have been created from the same base
keyframe set. By the current design the user application must experimentally determine what is a
proper summary.

33

Audio
In

THE VIRAGE AUDIO
PRIMITIVE
Audio Feature
Extraction
Internal Audio
Repr i
Audio Scene
Transition
Detection
Speaker Silence Speech Music
Change Zones to Music to Speech

Figure 5: Left: Audio Primitive Right: Caption Primitive

THE VIRAGE CAPTION
Caption PRIMITIVE
In | Closed
Caption Parser
Internal Caption
Repr i
Caption
Segmentation
i
Speaker Topic Subject Speciat
Break Break Index Index

Query Results
Processor Processor
Module Module

: !

Sy S T LI -
Collection Management Module
Video Data Meta Data
Module Module

Video Metadata
Server Server

N

VIDEO DATABASE APPLICATION USING THE VIRAGE VIDEO ENGINE

ol o lal--la-i g0l

rEwc

mHOPTHRESZ™

USER

34

Figure 6: Video Database using the Virage video engine

¢
§

Figure 7: Graphical User Interface for a prototype video database

35

Primitives |
|
i

pue{ LOCA! ju{ Global et e -
Texture| [Structur etc.
Color Color I

Primitive
Registration
Interface

.

Analyze Weights & Compare
'C' API 4 Scores P

|
|
I
RGB Image. " t Two Feature |
In SaSEN Vectors In |
Feature 1
Vector I
Qut Similarity !
Score Out !
|

Figure 8: Components of the Virage Image Search Engine.

36

